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A B S T R A C T

The importance of mapping regional and global cropland distribution in timely ways has been recognized, but
separation of crop types and multiple cropping patterns is challenging due to their spectral similarity. This study
developed a new approach to identify crop types (including soy, cotton and maize) and cropping patterns (Soy-
Maize, Soy-Cotton, Soy-Pasture, Soy-Fallow, Fallow-Cotton and Single crop) in the state of Mato Grosso, Brazil.
The Moderate Resolution Imaging Spectroradiometer (MODIS) normalized difference vegetation index (NDVI)
time series data for 2015 and 2016 and field survey data were used in this research. The major steps of this
proposed approach include: (1) reconstructing NDVI time series data by removing the cloud-contaminated pixels
using the temporal interpolation algorithm, (2) identifying the best periods and developing temporal indices and
phenological parameters to distinguish croplands from other land cover types, and (3) developing crop temporal
indices to extract cropping patterns using NDVI time-series data and group cropping patterns into crop types.
Decision tree classifier was used to map cropping patterns based on these temporal indices. Croplands from
Landsat imagery in 2016, cropping pattern samples from field survey in 2016, and the planted area of crop types
in 2015 were used for accuracy assessment. Overall accuracies of approximately 90%, 73% and 86%, respec-
tively were obtained for croplands, cropping patterns, and crop types. The adjusted coefficients of determination
of total crop, soy, maize, and cotton areas with corresponding statistical areas were 0.94, 0.94, 0.88 and 0.88,
respectively. This research indicates that the proposed approach is promising for mapping large-scale croplands,
their cropping patterns and crop types.

1. Introduction

Agricultural production in Brazil has grown rapidly over the past
three decades due to rising global demand, favorable commodity prices,
and technological advances (Cohn et al., 2016; Dias et al., 2016). The
improvement in crop management practices and cropland expansion
and intensification have made Brazil the leading exporter in soybeans,
sugar, meat, coffee, and orange juice (FAO, 2015). These advances re-
quire updating crop distribution information and its dynamic change in

a timely way. In the past decade, much research on mapping cropland
distribution in Brazil has been conducted (Arvor et al., 2011; Arvor
et al., 2012; Brown et al., 2013; Epiphanio et al., 2010; Gusso et al.,
2014; Rudorff et al., 2010; Victoria et al., 2012; Zhu et al., 2016).
Landsat imagery has been extensively used for crop mapping due to its
long-term historical records at no cost and relatively fine spatial re-
solution (Maxwell et al., 2004; Odenweller, 1984; Vieira et al., 2012;
Zheng et al., 2015; Zhong et al., 2014). However, the revisiting times
(16 days) result in difficulty collecting cloud-free images, especially in
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tropical areas. At regional and global scales, many previous studies on
cropland mapping used MODIS (Moderate Resolution Imaging Spec-
troradiometer) data or integration of MODIS and Landsat data to ef-
fectively use phenological characteristics from the high temporal re-
solution (Arvor et al., 2011; Kumar et al., 2008; Lobell and Asner, 2004;
Thenkabail and Velpuri, 2006; Wardlow et al., 2007; Xiao et al., 2005).
MODIS normalized difference vegetation index (NDVI) and enhanced
vegetation index (EVI) time-series data are commonly used for crop
classification (Arvor et al., 2011; Gumma et al., 2016; Lobell and Asner,
2004; Ozdogan, 2010; Pan et al., 2012; Thenkabail et al., 2005;
Wardlow and Egbert, 2008; Xiao et al., 2005; Zhu et al., 2016, 2017).

The approaches can be grouped into two broad categories: pixel-based
and subpixel-based methods. Table 1 provides examples for cropland
mapping using MODIS time-series data.

Coarse spatial resolution images such as MODIS are often used to
map large-scale cropland or single-crop type distribution (Galford et al.,
2008; Lobell and Asner, 2004; Teluguntla et al., 2017; Thenkabail and
Wu, 2012; Xiao et al., 2005) without taking different cropping patterns
and multi-crop types into account. However, the spatial distribution of
cropping patterns and crop types at regional and global scales are re-
quired for reducing the uncertainty of crop yield estimation and for
making better decisions in crop planting to achieve food security. The

Table 1
Summary of selected approaches for mapping large-scale cropland distribution.

Method Description of examples Key references

Pixel-based
approaches

Traditional classifiers and
machine learning classifiers

(1) Maximum likelihood classifier based on MODIS EVI time-series data to
map crop types and cropping system in Mato Grosso, Brazil

Arvor et al. (2011)

(2) Spectral angle mapper based on MODIS EVI time-series to map crop
types in Paraná, Brazil

Grzegozewski et al. (2016)

(3) Decision tree classifier based on MODIS NDVI and EVI time-series data
to classify agricultural land use data in Mato Grosso, Brazil; based on
MODIS NDVI time-series data to identify crop types in Kansas, USA or the
conterminous USA; and based on LSWI, EVI, and NDVI time-series data to
identify paddy rice in the southern China

Brown et al. (2013), Wardlow and Egbert
(2010), Massey et al. (2017), Xiao et al.
(2005)

(4) Neutral network based on MODIS NDVI time-series data to classify
crop types across Laurentian Great Lakes Basin, USA

Lunetta et al. (2010)

(5) Classification and regression trees approach to extract crop types
based on MODIS NDVI time-series in Manitoba, Canada

Chen et al. (2016)

(6) Random Forest classifier to extract crop area in USA based on MODIS
time-series

Hao et al. (2015), Zhong et al. (2016)

Data transform algorithms (1) Fourier analysis based on MODIS NDVI time-series data to map crop
type distribution in northern China

Zhang et al. (2008)

(2) Wavelet analysis based on MODIS EVI time-series data to map
cropland distribution in Mato Grosso, Brazil

Galford et al. (2008)

Temporal profile fitting
method

(1) Temporal best-fitting classifier based on MODIS EVI time-series data to
extract crop types in Rondônia, Brazil

Brown et al. (2007)

(2) Dynamic Time Warping distance-based similarity measure approach
based on MODIS NDVI time-series to map cropping system in Vietnam

Guan et al. (2016)

Phenology Method (1) Optimizing threshold by comparing key phenology metrics derived
from MODIS with that from ground data to extract crop types in central
Germany

Xu et al. (2017)

(2) Quantifying the relationship between crop phenology index time-
series and winter wheat area

Pan et al. (2012)

Hybrid method (1) Automated Cropland Classification/Mapping Algorithm (ACCA,
ACMA) based on clustering classifers and spectro-temporal characteristics
from MODIS NDVI time-series

Thenkabail and Wu (2012), Xiong et al.
(2017)

(2) Decision tree algorithms and spectral matching techniques for season
rice cropland mapping in Bangladesh and irrigated area mapping in India

Dheeravath et al. (2010), Gumma et al.
(2014)

(3) Object-oriented method and supervised classification to map crop
area.

Vintrou et al. (2012)

(4) Data fusion with Landsat 8 imagery and support vector machine to
map crop types in Midwest USA

Zhu et al. (2017)

Subpixel-based
approaches

Temporal unmixing
technique

(1) Probabilistic temporal unmixing methodology using time-series
MODIS red and near infrared data in identifying crop proportion area in
northwest Mexico and southern Great Plains, USA

Lobell and Asner (2004)

(2) Unsupervised signal processing algorithm to temporally decompose
MODIS data to automatically map major crop types in Kansas and
Nebraska, USA and in Turkey

Ozdogan (2010)

(3) Spatially constrained phenological mixture analysis (SPMA) to extract
crop percent covers using MODIS NDVI time-series data in the Midwest
USA

Zhong et al. (2015)

Regression technique (1) Regression model with adaptive parameters based on MODIS EVI
time-series data to extract winter wheat proportion map in China

Pan et al. (2012)

(2) Nonlinear regression technique based on MODIS time-series data for
mapping fractional corn and soybean distribution at national scale in USA

Chang et al. (2007)

(4) Linear regression model based on MODIS EVI time-series and Landsat
data to produce fractional cropland map in Mato Grosso, Brazil

Zhu et al. (2016)

Note: MODIS, Moderate Resolution Imaging Spectroradiometer; NDVI, normalized difference vegetation index; EVI, enhanced vegetation index; LSWI, land surface water index.
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development of the spatial distribution of cropping patterns and crop
types in Mato Grosso, Brazil, is a challenge due to the following pro-
blems: (1) Frequent cloud covers during the crop growing season result
in difficulties using crop phenological information. The contaminated
pixels may be wrongly recognized as other crop types if the cloud effect
is not properly eliminated. (2) Spectral confusion occurs between crop
and other artificial vegetation and among crop types. Crops and pas-
tures are often confused due to their similar temporal profiles. Spectral
confusion exists among different crop types such as cotton, maize, su-
garcane and millet. These crop types have similar agricultural calendars
as second crops in a rotation in Mato Grosso (from March to July), thus,
most of their temporal profiles may be mixed together, making it hard
to extract them. Therefore, this study aimed to develop a new approach
to map cropland distribution, identify major cropping patterns (the
planting combination of crop types in a given farm area within an
agricultural period, e.g., Soy-Maize, and Soy-Cotton), and separate
major crop types (the crop category planted within a cropping season,
e.g., soy, maize, and cotton) in Mato Grosso, using MODIS NDVI time-
series data.

2. Study area

Mato Grosso, the third-largest state in Brazil (over 90,000 km2), was
selected as the study area (Fig. 1a). Mato Grosso contains three major
ecobiomes: the Amazon rainforest in the north, Cerrado in the middle,
and Pantanal in the south (Dias et al., 2016). Land cover types include
forest (primary and secondary forest), plantation (Eucalyptus), pasture,
high-dense Cerrado with tree-dominant species (CerradoH), low-dense
Cerrado with grass-dominant species (CerradoL), crops, water, and
impervious surface area (ISA). The agricultural lands are mainly con-
centrated in the Cerrado biome. The agro-natural landscapes include
crop-forest (Fig. 1b) and crop-pasture (Fig. 1c) mosaics. This region has
three climate seasons—rainy, dry, and transition season, according to
precipitation patterns (Vourlitis et al., 2002). Rainy season ranges from
December to March while the dry season occurs approximately from
June to September. The remaining months belong to the transition
season. Almost all crops are planted in the rainy and transition seasons,
except for those growing in the dry season with irrigation. Soy, maize,
and cotton are the three main crops in this state, and the agriculture
calendar for these crops goes from mid-September to the following July,
depending on the soils, regions, and the onsets of rainy and dry seasons
(Arvor et al., 2011; Gusso et al., 2014; Zhu et al., 2016). There are two
planting periods during an agricultural year. Different crop types are
usually combined in separate planting periods. There are six major
cropping pattern types: Soy-Maize, Soy-Cotton, Fallow-Cotton, Soy-
Fallow, Soy-Pasture, and Single crop (e.g., Cotton-Cotton, Sugarcane-
Sugarcane). According to our field survey and statistics from the Bra-
zilian Institute of Geography and Statistics (IBGE), these six cropping
patterns account for 93.8% of total agricultural area in Mato Grosso
(IBGE, 2015). Therefore, having huge cropland area and different
cropping patterns, Mato Grosso is an ideal study area for exploring crop
mapping algorithms.

3. Methods

Fig. 2 illustrates the framework of mapping cropland, cropping
patterns and crop types using MODIS NDVI time-series data. The major
steps include data collection and preprocessing, extraction of pheno-
logical features from MODIS time-series data, identification of crop-
land, cropping patterns, and crop types, and evaluation of the results.

3.1. Data collection and preprocessing

Table 2 summarizes the datasets used in this study, including
MODIS NDVI time-series data, Landsat 8 Operational Land Imager
(OLI), field survey data, and statistical data of crop types. The 16-day

MODIS NDVI composite data (MOD13Q1) with spatial resolution of
250m was used. During the rainy season, cloud cover is a recurrent
problem affecting the real land surface reflectance. The pixels con-
taminated by clouds and shadows were reconstructed using a simple
temporal interpolation method (Chen et al., 2016). Specifically, the
contaminated pixels were gap-filled with an interpolation filter by
filling with the adjacent non-contaminated values. The major ad-
vantage of this method is that the gap-filled value will not break the
originality of time series trend composed by clear pixels. The pixel re-
liability band was used during cloud and shadow detection. After re-
moval of clouds and shadows, all tiles were mosaicked from Sinusoidal
to Albers Conical Equal Area projection with the nearest neighbor re-
sampling approach. This projection was selected because it had the
minimum bias on the area calculation and the result based on this
projection can be used to compare the actual planted area from statis-
tics. All images of each year were layer stacked and subset over Mato
Grosso. Finally, the Savitzky-Golay smooth approach was used to
eliminate some small fluctuations on the temporal NDVI dataset before
running a phenology model (Chen et al., 2004; Savitzky and Golay,
1964).

Two scenes of Landsat OLI imagery in June 2016 were used to va-
lidate the crop area extracted from MODIS data. Each Landsat image
shows a representative landscape (crop-forest or crop-pasture) to meet
the land cover diversity in Mato Grosso. The Landsat 8 L1T product has
very good geometric accuracy because it has been systematically ter-
rain-corrected. The two OLI images were first calibrated to top-of-at-
mosphere reflectance (Mishra et al., 2014), then to land surface re-
flectance using an improved dark-object subtraction approach (Chander
et al., 2009; Lu et al., 2002). A maximum likelihood classifier (MLC)
was applied to classify the two Landsat images. The crop map with crop
and non-crop categories was generated by grouping forest, pasture,
bare soil, water, and ISA into a non-crop category from the MLC clas-
sification results. Validation for the crop/non-crop map using 300
points randomly selected by the stratified sampling technique for each
image showed that both crop maps have high overall accuracy (higher
than 95%) as well as high user’s and producer’s accuracies (larger than
90%). The accurate Landsat classification results indicated that they
could be used as the reference data for validation of the MODIS-derived
crop maps.

Land cover samples, collected from field surveys and Google Earth
images during the period of September 2015 to August 2016, were used
to classify land cover types for MODIS data. Each land cover sample was
carefully selected from patches larger than 250m×250m to ensure
the purity of samples. A total of 150 samples were collected, and each
land cover type has at least 20 samples. Crop type samples were col-
lected from field surveys at Campo Verde municipality in December
2015 and May 2016. A minimum patch size of 25 ha (around 4 pixels)
was applied to ensure that the selected patches were sufficiently large
to collect a representative spectral-temporal signal. A total of 125
cropping pattern samples were obtained for training with at least five
samples for each cropping pattern. The statistical data of crop types
include soybean, maize and cotton during the growing season of
2014–2015. It is worth noting that this dataset is a survey, statistics-
based at the scale of the municipality.

3.2. Approach to mapping cropland distribution

Many classification algorithms such as MLC, artificial neural net-
work (ANN), support vector machine (SVM), random forest (RF) and
decision tree classifier (DTC), are available (see the classification
overview by Lu and Weng in 2007). Our research in the Brazilian
Amazon indicates that DTC is one of the best classifiers in land cover
classification (Li et al., 2012; Lu et al., 2012; Lu et al., 2014). Compared
to other machine learning methods such as ANN and SVM that require
much time and labor to obtain the optimized parameters, DTC is much
easier to interpret and can be built from direct inspection of variables.
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RF is actually an ensemble of decision trees, thus it is more complex
than DTC in terms of parameters predefining, sample training and result
voting (Breiman, 2001). Another advantage of using DTC is its explicit
working mechanism based on training samples. We coded DTC using
MATLAB. One critical step in using DTC is to identify suitable variables
and corresponding thresholds for each variable. A comparative analysis
of different temporal indices and phenological metrics was conducted
to identify variables. Previous research has indicated that phenology
features are valuable for land cover classification (Chen et al., 2016;
Pan et al., 2012; Xu et al., 2017). Eight land cover types were analyzed
based on their temporal patterns of NDVI, and six phenological metrics
were calculated from NDVI time-series using the TIMESAT package for
each sample (Jönsson and Eklundh, 2004). These metrics include start
of season (SOS), end of season (EOS), maximum value, amplitude, base
value and length of growing season. SOS is defined as the point on the
temporal curve where the distance from the left minimum is 10% of the
distance between the left minimum level and the maximum level. Si-
milarly, EOS refers to the point on the temporal curve where the dis-
tance from the right minimum is 10% of the distance from the right
minimum value and the maximum value. The length of growing season
is defined as the time interval between SOS and EOS. Amplitude is

defined as the NDVI difference between the maximum NDVI and the
base value (Jönsson and Eklundh, 2004).

Fig. 3a illustrates the temporal profile of NDVI mean value (with
two times of standard deviation) for each land cover type. Several time
points can be used to separate one land cover type from others. For
instance, forest and water can be separated by the NDVI values during
the dry season in August (NDVIdry). However, no single time point can
completely extract all crops from other land covers. Fig. 3b, c provides a
comparison of six phenology metrics for each land cover type. It in-
dicates that crop is totally mixed with others in terms of SOS, EOS, and
length (Fig. 3b), implying these metrics are not suitable for crop ex-
traction. Another three metrics in Fig. 3c indicate that crop is separable
from forest, CerradoH, and water but intersects with plantations, pas-
ture, CerradoL, and ISA in terms of base value. Similarly, crop has a
much higher maximum value than water and ISA but is mixed with
other land covers. In amplitude, crop is isolated from almost all other
land covers. Therefore, amplitude and NDVIdry were selected because
they had the most potential combination capable of extracting crop.
The DTC was then created using these variables (i.e., NDVIdry and
amplitude) to extract crop. Average NDVI of all time points from August
were used to combine NDVIdry. The threshold of NDVIdry was set as 0.25,

Fig. 1. Study area in Mato Grosso, Brazil (a), crop validation regions A (b) and B (c), and cropping pattern samples in Campo Verde municipality (d).
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which was determined as the middle value between the upper bound of
water and bottom bound of crop. Similarly, the threshold of amplitude
was set as 0.4, which was determined as the middle value between the
bottom bound of crop and upper bound of CerradoH. Finally, the crop
areas in 2015 and 2016 were produced by implementing the DTC.

3.3. Approach to mapping cropping pattern and crop type distribution

Each cropping pattern has its own characteristics in the stages of
planting, growing, and harvesting. This provides the possibility of ex-
tracting cropping pattern types using remote sensing time-series ima-
gery. In reality, temporal profile analysis of crop phenology is funda-
mental for crop type mapping. Fig. 4a illustrates the NDVI temporal
profiles based on six cropping patterns in Mato Grosso. Although se-
lected cropping patterns have similar NDVI values in particular periods,
some differences can still be used to distinguish them. For example, a
single cropping system has only one peak stage while the double
cropping system has two peak stages, implying that the number of
peaks can be used to extract a single cropping pattern from a double
cropping pattern. The peak value of Fallow-Cotton pattern during its
fallow season is much smaller than that of the other four double-
cropping patterns during the same period, indicating the peak value in
the first season is a potential variable to extract Fallow-Cotton pattern.
Since the NDVI value of Soy-Pasture in the late dry season is much
higher than that of Soy-Maize, Soy-Cotton, and Soy-Fallow in the same
period, the NDVI value in this period can be used to separate Soy-
Pasture from other patterns. The harvest of soy in Soy-Cotton patterns

occurs earlier than in Soy-Maize, Soy-Fallow and Soy-Pasture, resulting
in smaller NDVI values of Soy-Cotton than others during the same
period, while the harvest of maize in Soy-Maize occurs earlier than the
harvest of cotton in Soy-Cotton and the senescence of fallow vegetation
in Soy-Fallow in the second crop season, leading to smaller NDVI values
of Soy-Maize in the same period. Thus, NDVI values at the ends of the
first and second crop seasons can be used as potential variables. In
summary, five temporal indices can be used to identify all cropping
patterns over the study area: number of peaks (NOP), peak values in the
first season (PVFS), values in the late dry season (VLDS), values in the
harvest period of the first season (VHPFS), and values in the harvest
period of the second season (VHPSS).

Fig. 5 illustrates the strategy of using DTC based on five temporal
indices to classify cropping patterns. According to the statistics shown
in Fig. 4, the following thresholds were determined:

(1) If NOP of a cropland pixel equals one, this pixel is assigned as a
single cropping pattern;

(2) If PVFS of a cropland pixel is less than 0.52, this pixel is assigned as
Fallow-Cotton;

(3) VLDS was used to identify Soy-Pasture pattern. Two temporal
points on August 28 and September 14 were selected to combine
VLDS because these NDVI values have the largest differences from
the other four types. If VLDS is greater than 0.44 (see Fig. 4c), this
pixel is assigned as Soy-Pasture;

(4) VHPSS and VHPFS were used to identify Soy-Maize and Soy-Cotton.
VHPSS included values on June 9 and 25 and July 11 and VHPFS

Fig. 2. Framework for extracting croplands, cropping patterns, and crop types from MODIS time-series data. Note: MODIS, Moderate Resolution Imaging Spectroradiometer; NDVI,
normalized difference vegetation index.

Table 2
Datasets used in this study.

Data Spatial resolution Time period Source

MOD13Q1 (H12V09, H12V10, H13V09, H13V10) 250m MODIS time-series data between 9/2014
and 8/2016

https://ladsweb.nascom.nasa.gov/index.html

Landsat Operational Imager (Path/Row: 227/69 &
226/71)

30m Two images on 6/13/2016 and 5/5/2016 https://earthexplorer.usgs.gov/

Land cover and cropping pattern samples – 2015–2016 Field survey in May 2016, Google Earth images
Area statistics of crop types Yearly, 142 municipalities 2014–2015 Brazilian Institute of Geography and Statistics

(IBGE)

Note: MODIS, Moderate Resolution Imaging Spectroradiometer.
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Fig. 3. Temporal profiles (a) and phenology features (b and c) of land cover types in Mato Grosso, Brazil. Note: NDVI, normalized difference vegetation index; SOS, start of season; EOS,
end of season.

Fig. 4. Temporal profiles (a) and phenological features (b, c, and d) of cropping patterns in Mato Grosso, Brazil. Note: PVFS, peak values in the first season; VLDS, values in the late dry
season; VHPFS, values in the harvest period of first season; VHPSS, values in the harvest period of second season.
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included values on January 17 and February 2 according to the
agricultural calendar in Mato Grosso. Thresholds of VHPSS and
VHPFS were set as 0.56 and 0.68, respectively, according to the
statistics of Fig. 4d. Here VHPSS is first applied because it has more
identical intervals for Soy-Maize than VHPFS for Soy-Cotton. The
threshold of VHPFS is set higher than the upper bound of Soy-
Cotton to include more pixels for Soy-Cotton because it is one of the
primary cropping pattern types in Mato Grosso.

It is worth noting that all thresholds were optimized by changing
their values within a certain range, which was determined by the NDVI
ranges of cropping patterns. The cropping pattern maps of the agri-
cultural years of 2015 and 2016 were generated after implementing the
proposed DTC. After the cropping pattern distribution was obtained,
the crop types were transformed using the following equations:

Soy= Soy-Maize+ Soy-Cotton+ Soy-Fallow+ Soy-Pasture+ Single (1)

Maize= Soy-Maize (2)

Cotton= Soy-Cotton+ Fallow-Cotton (3)

Although single cotton and single maize have co-existed in Mato
Grosso in recent years, the single cropping system was characterized by
soy in this study. This is because (1) according to the 2015 statistical
data from IBGE, the planted areas of total cotton and first crop maize
accounted for only 5.45% and 0.62% of total crop area, respectively,
implying that the planted areas of single cotton and first crop maize are
much smaller than the areas of single soy and first crop soy; (2) most
single maize patches are too small to be classified using MODIS data.
Similarly, other double cropping systems such as Maize-Cotton were not
considered in this study for the same reason. These assumptions are also
found in Arvor et al. (2011) and Brown et al. (2013). Details about the
uncertainties and bias resulting from these assumptions are discussed in
Section 5.

3.4. Evaluation of cropland, cropping pattern and crop types

The error matrix is commonly used to evaluate classification results
(Congalton and Green, 2008) and was used in this research. However,
the evaluation of classification results from coarse spatial resolution

data is difficult due to land cover heterogeneity. Two approaches based
on Landsat image classification and statistical data were used in this
research. The MODIS-derived cropland map for 2016 was evaluated
using the cropland data from Landsat in the same year. The MODIS-
derived cropping pattern map and crop type map for 2016 were eval-
uated using the field survey data. The MODIS-derived cropland area
and crop type area for 2015 were evaluated using statistical data from
the same year.

Determination of the number of test samples and the method to
allocate these samples were critical for conducting the correct accuracy
assessment (Lu and Weng, 2007). Generally, the number of test samples
is based on the expected percent accuracy and allowable error
(Congalton and Green, 2008) or based on the rule of thumb that one
needs a minimum of 50 test samples for each class. In this research, the
crop/non-crop data from Landsat with 30-m cell size were aggregated
to 250-m cell size, the same as MODIS data, using the majority ap-
proach. A total of 300 test samples were selected from the aggregated
crop distribution images at two sites using the stratified random sam-
pling approach. These test samples were used to evaluate the MODIS-
derived cropland maps. A total of 262 test samples for cropping patterns
were selected from the field survey and these test samples were dif-
ferent from the training samples. For crop types, the test samples were
derived from the cropping-pattern test samples by applying rules shown
in Eqs. (1)–(3). The error matrix was then developed for the cropland,
cropping pattern and crop type classification result, respectively. Fi-
nally, overall accuracies, user’s accuracies, and producer’s accuracies
for cropland, cropping pattern and crop type were calculated from the
error matrix respectively (Foody, 2009).

Another approach to evaluate the MODIS-derived results is based on
statistical data at the municipality level. The reference data for crop-
land and crop type areas were calculated from IBGE data for each
municipality. The MODIS-derived cropland and crop type areas for each
municipality in Mato Grosso were calculated using a zoning statistical
technique. The normalized difference area index (NDAI), adjusted
coefficient of determination (R2), and relative root mean square error
(RRMSE) (Wang et al., 2012) were used to evaluate the MODIS-derived
results. The equations are expressed as follows:

NDAIi=(Ei− Si)/(Ei+Si) (4)
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where Ei and Si are estimated area and statistical area in municipality i,
respectively; E and S are the averages of the estimated area and sta-
tistical area of all municipalities, respectively; p and n represents the
total number of independent variables and samples (municipalities),
respectively. R′2 represents the coefficient of determination. Compared
to R′2, R2 is more general because it eliminates the influence derived
from samples and independent variables. NDAI reflects the deviation
extent (−1 to 1) of the estimated area to the reference data; that is, a
negative value implies an underestimation and a positive value an
overestimation, and the closer the value is to zero means the higher
accuracy of the estimation.

4. Results

4.1. Analysis of cropland mapping results

The developed cropland distribution from MODIS data (Fig. 6) in-
dicates that the croplands are mostly distributed in central and south-
eastern Mato Grosso, accounting for 14.68% of the total land in this

Fig. 5. Decision tree rules of cropping pattern classification in Mato Grosso, Brazil. Note:
NOP, number of peaks; PVFS, peak values in the first season; VLDS, values in the late dry
season; VHPFS, values in the harvest period of the first season; VHPSS, values in the
harvest period of the second season.
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state. The cropland distributions from MODIS data (A1 and B1) match
well with the results from Landsat data (A2 and B2) for two test regions.
The locations with larger cropland patch sizes (right side in A1 and A2,
and top right in B1 and B2) have higher consistency than the locations
with fragmented patches (left sides in A and B). Thus, landscape con-
figuration has an important impact on cropland mapping accuracy.

The accuracy assessment result (Table 3) indicates that croplands in
Mato Grosso can be effectively mapped from MODIS images with an
overall accuracy of over 90%. However, misclassification existed in
both test regions. For example, other classes in test region A were
misclassified as croplands, and the cropland class was misclassified as
other classes in test region B. This is because the fragmented fields may
be classified as non-cropland (in region A) or cropland (in region B),
depending on the composition of land covers, due to the similar tem-
poral signals between crop and pasture. Note that the user’s accuracy in
region A (95.4%) is higher than in region B (78.0%). This further
confirmed the impacts of the landscape structure on cropland extrac-
tion. Obviously, it is more difficult to extract cropland from crop-pas-
ture landscapes in region B than crop-forest landscapes in region A, as
pasture has more phenological and spectral signals similar to crops than
forest. Overall, the proposed approach for cropland mapping based on

MODIS NDVI time-series data is able to successfully extract croplands
over large areas.

The adjusted coefficient of determination (R2) between MODIS-de-
rived cropland and statistical data in 2015 at the municipality scale was
0.94 (Fig. 7a), implying the promise of this approach in developing
croplands from MODIS data. Note that the regression line of cropland
almost overlaps at the 1:1 diagonal, further confirming the high
agreement between the cropland area estimation and statistical data.
Fig. 7b shows the inconsistency sources that cropland estimation errors
decreased as the planted area at municipality scale increased. That is,
the smaller cropland areas in the municipalities resulted in higher es-
timation errors. Around 20 municipalities with very small cropland
areas have NDAI values of 1, which is reasonable due to the mixed
pixels dominated by smaller cropland areas in MODIS data. Conse-
quently, the higher estimation errors result from misclassification of
these mixed pixels when pixel-based approaches are used. Fig. 7b also
indicates that overestimation of cropland areas is dominant in most
municipalities as most NDAI values are larger than 0. Municipalities
with small cropland areas are more prone to be overestimated. In order
to better visualize the overestimation in those municipalities, Fig. 8
provides examples of municipalities where the crop areas are small and
overestimated.

4.2. Analysis of cropping pattern mapping results

An overall accuracy of 73% for cropping patterns (Table 4) was
obtained. All cropping patterns, except Soy-Fallow, have user’s ac-
curacies of 78% or higher and producer’s accuracies of 66% or higher.
Single-crop has the highest accuracy with the smallest commission and
omission errors. This is reasonable because the temporal profile of the
Single-crop (Fig. 4) is considerably different from that of other cropping
patterns. Almost half of Soy-Fallow samples were wrongly classified as
Soy-Maize and Soy-Cotton, resulting in a very low user’s accuracy
(30%). This is mainly caused by the difficulty in separating the highly
mixed spectral characteristics among these three cropping patterns as
indicated in Fig. 4. This difficulty also results in some Soy-Maize

Fig. 6. Comparison of cropland distributions between the MODIS-derived map (A1 and B1) and Landsat-derived map (A2 and B2) in two test regions (A and B) in Mato Grosso, Brazil.

Table 3
Confusion matrix and accuracy statistics for croplands derived from the 2016 MODIS
imagery in Mato Grosso, Brazil.

Reference data from Landsat classification results

Cropland Others Total Producer’s
accuracy

User’s
accuracy

Region A Cropland 103 5 108 85.12 95.37
Others 18 174 192 97.21 90.63
Total 121 179 Overall accuracy: 92.33%

Region B Cropland 78 22 100 90.7 78
Others 8 192 200 89.72 96
Total 86 214 Overall accuracy: 90%
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samples being wrongly classified as Soy-Cotton and Soy-Fallow.
The spatial distribution of cropping patterns in Mato Grosso in 2015

(Fig. 9) indicates that Soy-Maize was mainly concentrated in the Cer-
rado biome, in the center of the state, and Soy-Fallow was largely
distributed in the west and south parts. Soy-Cotton and Fallow-Cotton
were mainly clustered in the west and southeast and Single crop and
Soy-Pasture were scattered throughout the state. Further analysis of the
cropping pattern areas (Table 5) indicates that Soy-Maize had the lar-
gest area in 2015, accounting for 39% of the total cropland area, fol-
lowed by Soy-Fallow with 31%. Single crop and Soy-Pasture had similar
planted area, occupying around 12% of total crop area. Soy-Cotton and
Fallow-Cotton had the smallest areas with 2%–3% of total crop area
each.

4.3. Analysis of crop type mapping results

An overall accuracy of 86% of crop types (Table 6) indicates that the
proposed method can successfully extract Soy, Maize and Cotton in
Mato Grosso. Soy has the best accuracy with user’s accuracy of 94% and
producer’s accuracy of 96%, much higher accuracy than that of Soy-
related cropping patterns as indicated in Table 4. This is because these
four Soy-related cropping patterns – Soy-Maize, Soy-Cotton, Soy-Fallow
and Soy-Pasture are highly mixed in cropping pattern mapping
(Table 4), but when they are merged into one (soy) in crop type map-
ping, the accuracy of soy is improved. The similar situation is for maize
and cotton.

The relationship between MODIS-derived crop type areas and sta-
tistical data in 2015 (Table 7) shows high R2 values for soy, maize, and
cotton, implying that the MODIS-derived areas for different crop types
have strong agreements with corresponding statistical data. The esti-
mated total cropland area reached 11,122 kha (kilo hectare), approxi-
mately 281 kha higher than the statistical cropland area. The high R2

values (0.94) and low RRMSE value (35%) further prove that the pro-
posed approach can effectively extract cropland area at large-scale
using MODIS data. The similar conclusion is for soy with RRMSE of
31.7%.

The relationship between MODIS-derived crop type area and cor-
responding statistical data (Fig. 10a1,b1,c1) shows a conclusion similar
to results in Table 7; that is, soy has the best estimation results. The
scatterplot between NDAI and statistical data for each crop type
(Fig. 10a2,b2,c2) indicates that soy and maize had many NDAI values of
nearly 0, implying that they have high extraction accuracies. In con-
trast, cotton has an NDAI value of 1 in many municipalities (Fig. 10c2),
indicating poor estimation. Fig. 10 also shows how the smaller areas
estimate deviate from their statistical values. Fig. 10a2 indicates that

soy is prone to be overestimated when soy areas in the municipalities
are less than 50 Kha. Fig. 10b2 indicates maize has a similar number of
overestimated and underestimated municipalities. Fig. 10c2 indicates
cotton is mainly underestimated for the municipalities with cotton
areas larger than 10 Kha, and overestimated when cotton areas are
smaller than 10 kha.

The spatial distribution of crop types in Mato Grosso in 2015
(Fig. 11a) indicates that the soy distribution is very similar to the
cropland distribution (Fig. 6). Maize appears in the Soy-Maize pattern,
and cotton occurs at both Soy-Cotton and Fallow-Cotton patterns
(Fig. 11b vs. Fig. 9). Analysis of each crop type area (Table 8) indicates
that soy has the largest planted area in Mato Grosso, accounting for
98% (69%) of the total cropland area (total crop type area), and cotton
has the least, accounting for only 5% of total cropland area. Note that
the percentages of crop type areas are more than 100% because of the
double cropping systems.

5. Discussion

This research proposed a new approach to map cropland, cropping
pattern and crop type distributions using MODIS time-series data. One
key to identify cropping patterns is to examine the differences of phe-
nological variables among crop types. The DTC for extracting croplands
and cropping patterns is simple and easy to implement and the results
are promising. Besides major cropping patterns like Soy-Maize and Soy-
Cotton, this proposed method is able to identify Crop-Fallow and Crop-
Pasture, something that previous research has not explored (Arvor
et al., 2011; Brown et al., 2013).

Different factors, such as cloud- and shadow-contaminated pixels,
temporal interpolation, smoothing, spatial sampling, assumptions for
the cropping and mixed pixels, may affect the cropping pattern and
crop type mapping results. Although the 16-day MODIS NDVI compo-
site and the temporal interpolation removal algorithm have been used
to remove the clouds and shadows, some omitted contaminated time
points still exist in the rainy season. The pixels with undetected cloud
temporal points could be incorrectly classified because of the mixed
pixels in the temporal indices. The temporal interpolation of cloud
pixels also brings uncertainty if the interpolation is over-adjusted. The
Savitzky-Golay smoothing filter can reduce some disturbances from
clouds but could also filter some important points. The uncertainties
derived from our temporal interpolation, smoothing, and spatial sam-
pling should be further analyzed. Although the nearest neighbor re-
sampling method does not change the originality of NDVI values, it also
cannot reflect the actual values for the sampled pixels. The inconsistent
geographic locations between MODIS and Landsat (around 50m at best

Fig. 7. Comparison of MODIS-derived cropland areas and statistical data (a) and analysis of normalized difference area index (NDAI) of croplands with statistical data (b) at the
municipality scale in Mato Grosso, Brazil.
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position) can also cause errors in the overall accuracy (Chen et al.,
2016).

The thresholds used for extraction of the croplands and cropping
patterns came from typical sample plots, but the determination of these

thresholds is subjective; that is, the estimated areas may change when
thresholds are different. This research indicates that the municipalities
with small cropland areas have high estimation errors—small cropland
patch sizes (mixed pixels in MODIS data) resulted in high uncertainty in

Fig. 8. Visual examples of municipality whose cropland area is overestimated comparing to statistical data.
(Note: Munici. represents municipality.).

Table 4
Confusion matrix and accuracy statistics for cropping patterns derived from the 2016 MODIS imagery in Mato Grosso, Brazil.

Reference class Total UA PA OA

Soy-Maize Soy-Cotton Soy-Fallow Soy-Pasture Fallow-Cotton Single

Soy-Maize 62 6 7 1 2 1 79 78% 79% 73%
Soy-Cotton 2 57 1 0 4 1 65 88% 70%
Soy-Fallow 11 12 14 5 3 2 47 30% 61%
Soy-Pasture 2 1 1 17 0 0 21 81% 74%
Fallow-Cotton 1 4 0 0 21 1 27 78% 66%
Single 0 1 0 0 2 20 23 87% 80%
Total 78 81 23 23 32 25 262

Note: UA, PA, and OA represent user’s accuracy, producer’s accuracy, and overall accuracy.
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area estimation of croplands and crop types. This situation is consistent
with previous research (Chen et al., 2016) showing that pixel homo-
geneity is an important factor in crop area mapping. The impact of
mixed pixels can be ignored in the municipalities having large cropland
area, but cannot be ignored in those municipalities with small cropland
areas. Due to the difficulty in identifying small cropland patches and
small areal proportion, single maize, single cotton, and Maize-Cotton
cannot be extracted in this study. This may cause overestimation for soy
area and other double cropping systems and bias of crop type

assessment based on statistical data. More research should be focused
on the improvement of estimation accuracy for the regions with rela-
tively small patch sizes.

Much research has explored the approaches to reduce the impacts of
mixed pixels on land cover mapping accuracy (Lobell and Asner, 2004;
Ozdogan, 2010; Zhu et al., 2016, 2017). Spectral mixture analysis has
proven to be an effective tool to decompose mixed pixels into fractional
objects (Kumar et al., 2008; Lobell and Asner, 2004; Ozdogan, 2010)
and has been extensively used in medium spatial resolution images such
as Landsat imagery (Chen et al., 2015; Lu et al., 2003). For coarse
spatial resolution images such as MODIS data, the difficulty is in se-
lecting suitable endmembers. An alternative is to use data fusion
techniques to integrate Landsat and MODIS data to improve the spatial
resolution of datasets. However, the huge amount of data needed will
be a challenge in a large area. Another solution could be the develop-
ment of approaches to map fractional cropland distribution by using
estimation models based on the relationships between MODIS vegeta-
tion index and Landsat-derived cropland data (Zhu et al., 2016, 2017).
The regression-based approach to estimate fractional cropland dis-
tribution is a solution to improve area estimation (Zhu et al., 2016), but
future research should be on the development of a suitable approach to
estimate fractional areas for different crop types or crop patterns,

Fig. 9. Spatial distribution of cropping patterns in Mato Grosso, Brazil, in 2015.

Table 5
Areal statistics of MODIS-derived cropping patterns in Mato Grosso, Brazil, in 2015.

Soy-Maize Soy-Fallow Soy-Pasture Soy-Cotton Fallow-Cotton Single crop

Area (kilo hectare) 4,353.7 3,476.4 1,366.0 327.5 229.0 1,370.0
% in cropland area 39.15 31.26 12.28 2.94 2.06 12.32

Table 6
Accuracy assessment result for crop types derived from the 2016 MODIS imagery in Mato Grosso, Brazil.

Reference class Total User's accuracy Producer's accuracy Overall accuracy

Soy Maize Cotton Others

Soy 224 0 3 11 238 94% 96% 86%
Maize 1 62 8 8 79 78% 79%
Cotton 2 3 86 1 92 93% 76%
Others 6 13 16 58 93 62% 74%
Total 233 78 113 78 502

Table 7
Areal comparison between MODIS-derived and statistical croplands and crop types in
Mato Grosso, Brazil, in 2015.

Crop type MODIS-derived
estimation (Kha)

Statistical area
(Kha)

R2 RRMSE

Soy 10,893.35 8966.68 0.94 31.71
Maize 4353.49 3570.61 0.88 59.25
Cotton 556.53 590.51 0.88 40.68
Total cropland

area
11,122.39 10,840.54 0.94 35.01

Note: Kha, kilo hectare; adjusted coefficient of determination (R2).
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especially for places with relatively small patch sizes of crop distribu-
tion.

Collection of cropping pattern ground-truth data over the whole
state is a challenge. During field work, our collected cropping pattern
data were mainly located within Campo Verde municipality, but no
samples for other regions were available. Given the high crop hetero-
geneities in municipalities with small crop areas, their accuracy of
cropping patterns and crop types could be lower than the accuracy in
Campo Verde. The developed approach based on samples and MODIS
datasets for 2016 was transferred to the 2015 data for cropping pattern
mapping in Mato Grosso, and the results have shown a good agreement
when the evaluation was conducted at municipality scale based on the
statistical data. However, caution should be taken when the developed
approach is directly transferred to other study areas because of the
different landscapes and land cover compositions. Adjustment of the

thresholds used in the DTC may be needed, depending on the cropping
pattern samples in a specific study.

6. Conclusions

A new approach was developed to map cropland, cropping pattern
and crop type distributions using MODIS NDVI time-series data in Mato
Grosso, Brazil. The major steps included (1) reconstructing MODIS
NDVI time-series data by removal of contaminated pixels using the
temporal interpolation algorithm; (2) identifying the best periods and
developing temporal indices and phenological parameters to extract
croplands; and (3) developing crop temporal indices to extract cropping
patterns and crop types using NDVI time-series data. Decision tree
classifier was applied to extract cropping patterns. The results show
that the proposed approach can effectively extract croplands, cropping

Fig. 10. Areal comparison of crop types from the MODIS and Statistic data (a1: soy; b1: maize; c1: cotton) and analysis of normalized difference area index (NDAI) of crop types (a2: soy;
b2: maize; c2: cotton) at the municipality scale.
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patterns and crop types. Overall accuracies of MODIS-derived crop-
lands, cropping patterns and crop types are around 90%, 73% and 86%,
respectively. In order to test the reliability of the developed approach,
this method was transferred to 2015 for cropping pattern mapping in
Mato Grosso. The R2 values between MODIS-derived data and statistical
data for soy, maize, cotton, and cropland were 0.94, 0.88, 0.88 and
0.94, respectively. This research will be valuable for rapidly updating
croplands, cropping patterns, and crop types over large areas, especially
in regions having large cropland patch sizes. More research is needed to
explore the approaches to estimate fractional results for different crop
types and crop patterns, especially in regions where patch sizes are
smaller than the cell size of MODIS data.

Declarations of interest

None.

Acknowledgements

This research is partially supported by the Zhejiang Agriculture and
Forestry University’s Research and Development Fund (2013FR052) and
by Belmont Forum funds for support for Batistella, Silva, and Moran (NSF
1531086). Batistella and Silva thank the São Paulo Research Foundation
(Fapesp 2014/50628-9 and 2015/25892-7). Dutra thanks CNPq for the
support of fieldwork through grants #401528/2012-0 and #309135/
2015-0. Sanches and Luiz thank CNPq for the support of fieldwork
through grant #402597/2012-5. The authors would like to thank the
Center for Global Change and Earth Observations, Michigan State
University for providing research support and facilities to Lu and Moran.
We also want to thank the editor and anonymous reviewers for their
valuable comments in improving this manuscript.

References

Arvor, D., Jonathan, M., Meirelles, M.S.P., Dubreuil, V., Durieux, L., 2011. Classification
of MODIS EVI time series for crop mapping in the state of Mato Grosso, Brazil. Int. J.
Remote Sens. 32, 7847–7871. http://dx.doi.org/10.1080/01431161.2010.531783.

Fig. 11. Spatial distribution of crop types in Mato Grosso, Brazil, in 2015: soy (a) and maize/cotton (b), noting the overlapped areas due to a double cropping system.

Table 8
Areal statistical results of MODIS-derived crop types in Mato Grosso, Brazil, in 2015.

Soy Maize Cotton

Area (kilo hectare) 10,893.35 4353.49 556.53
% in total cropland area 97.94 39.14 5.00
% in total area of crop types 68.93 27.55 3.52

Y. Chen et al. Int J Appl  Earth Obs Geoinformation 69 (2018) 133–147

145

http://dx.doi.org/10.1080/01431161.2010.531783


Arvor, D., Dubreuil, V., Simões, M., Bégué, A., 2012. Mapping and spatial analysis of the
soybean agricultural frontier in Mato Grosso, Brazil, using remote sensing data.
GeoJournal 78, 833–850. http://dx.doi.org/10.1007/s10708-012-9469-3.

Breiman, L., 2001. Random forests. Mach. Learn. 45 (1), 5–32.
Brown, J.C., Jepson, W.E., Kastens, J.H., Wardlow, B.D., Lomas, J.M., Price, K.P., 2007.

Multitemporal, moderate-spatial-resolution remote sensing of modern agricultural
production and land modification in the Brazilian Amazon. GISci. Remote Sens. 44,
117–148. http://dx.doi.org/10.2747/1548-1603.44.2.117.

Brown, J.C., Kastens, J.H., Coutinho, A.C., Victoria, D.D.C., Bishop, C.R., 2013.
Classifying multiyear agricultural land use data from Mato Grosso using time-series
MODIS vegetation index data. Remote Sens. Environ. 130, 39–50. http://dx.doi.org/
10.1016/j.rse.2012.11.009.

Chander, G., Markham, B.L., Helder, D.L., 2009. Summary of current radiometric cali-
bration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors. Remote Sens.
Environ. 113, 893–903. http://dx.doi.org/10.1016/j.rse.2009.01.007.

Chang, J., Hansen, M.C., Pittman, K., Carroll, M., DiMiceli, C., 2007. Corn and soybean
mapping in the United States using MODIS time-series data sets. Agron. J. 99,
1654–1664. http://dx.doi.org/10.2134/agronj2007.0170.

Chen, J., Jönsson, P., Tamura, M., Gu, Z., Matsushita, B., Eklundh, L., 2004. A simple
method for reconstructing a high-quality NDVI time-series data set based on the
Savitzky-Golay filter. Remote Sens. Environ. 91, 332–344. http://dx.doi.org/10.
1016/j.rse.2004.03.014.

Chen, Y., Lu, D., Luo, G., Huang, J., 2015. Detection of vegetation abundance change in
the alpine tree line using multitemporal Landsat Thematic Mapper imagery. Int. J.
Remote Sens. 36, 4683–4701. http://dx.doi.org/10.1080/01431161.2015.1088675.

Chen, Y., Song, X., Wang, S., Huang, J., Mansaray, L.R., 2016. Impacts of spatial het-
erogeneity on crop area mapping in Canada using MODIS data. ISPRS J.
Photogramm. Remote Sens. 119, 451–461. http://dx.doi.org/10.1016/j.isprsjprs.
2016.07.007.

Cohn, A.S., Gil, J., Berger, T., Pellegrina, H., Toledo, C., 2016. Patterns and processes of
pasture to crop conversion in Brazil: evidence from Mato Grosso state. Land Use
Policy 55, 108–120. http://dx.doi.org/10.1016/j.landusepol.2016.03.005.

Congalton, R.G., Green, K., 2008. Assessing the Accuracy of Remotely Sensed Data:
Principles and Practices. CRC press.

Dheeravath, V., Thenkabail, P.S., Chandrakantha, G., Noojipady, P., Reddy, G.P.O.,
Biradar, C.M., Gumma, M.K., Velpuri, M., 2010. Irrigated areas of India derived using
MODIS 500 m time series for the years 2001–2003. ISPRS J. Photogramm. Remote
Sens. 65, 42–59. http://dx.doi.org/10.1016/j.isprsjprs.2009.08.004.

Dias, L.C.P., Pimenta, F.M., Santos, A.B., Costa, M.H., Ladle, R.J., 2016. Patterns of land
use, extensification, and intensification of Brazilian agriculture. Global Change Biol.
22, 2887–2903. http://dx.doi.org/10.1111/gcb.13314.

Epiphanio, R.D.V., Formaggio, A.R., Rudorff, B.F.T., Maeda, E.E., Luiz, A.J.B., 2010.
Estimating soybean crop areas using spectral-temporal surfaces derived from MODIS
images in Mato Grosso, Brazil. Pesq. Agropec. Bras. 45, 72–80. http://dx.doi.org/10.
1590/S0100-204X2010000100010.

FAO (Food and Agriculture Organization of the United Nations), 2015. FAOSTAT
Statistical Database. Food and Agriculture Organization of the United Nations, Rome.

Foody, G.M., 2009. Classification accuracy comparison: hypothesis tests and the use of
confidence intervals in evaluations of difference, equivalence and non-inferiority.
Remote Sens. Environ. 113, 1658–1663. http://dx.doi.org/10.1016/j.rse.2009.03.
014.

Galford, G.L., Mustard, J.F., Melillo, J., Gendrin, A., Cerri, C.C., Cerri, C.E.P., 2008.
Wavelet analysis of MODIS time series to detect expansion and intensification of row-
crop agriculture in Brazil. Remote Sens. Environ. 112, 576–587. http://dx.doi.org/
10.1016/j.rse.2007.05.017.

Grzegozewski, D.M., Johann, J.A., Uribe-Opazo, M.A., Mercante, E., Coutinho, A.C.,
2016. Mapping soya bean and corn crops in the State of Paraná, Brazil, using EVI
images from the MODIS sensor. Int. J. Remote Sens. 37, 1257–1275. http://dx.doi.
org/10.1080/01431161.2016.1148285.

Guan, X., Huang, C., Liu, G., Meng, X., Liu, Q., 2016. Mapping rice cropping systems in
Vietnam using an NDVI-based time-series similarity measurement based on DTW
distance. Remote Sens. 8, 19. http://dx.doi.org/10.3390/rs8010019.

Gumma, M.K., Thenkabail, P.S., Maunahan, A., Islam, S., Nelson, A., 2014. Mapping
seasonal rice cropland extent and area in the high cropping intensity environment of
Bangladesh using MODIS 500 m data for the year 2010. ISPRS J. Photogramm.
Remote Sens. 91, 98–113. http://dx.doi.org/10.1016/j.isprsjprs.2014.02.007.

Gumma, M.K., Thenkabail, P.S., Teluguntla, P., Rao, M.N., Mohammed, I.A., Whitbread,
A.M., 2016. Mapping rice-fallow cropland areas for short-season grain legumes in-
tensification in South Asia using MODIS 250 m time-series data. Int. J. Digital Earth 9
(10), 981–1003. http://dx.doi.org/10.1080/17538947.2016.1168489.

Gusso, A., Arvor, D., Ricardo Ducati, J., Veronez, M.R., Da Silveira, L.G., 2014. Assessing
the MODIS crop detection algorithm for soybean crop area mapping and expansion in
the Mato Grosso state, Brazil. Sci. World J. 2014. http://dx.doi.org/10.1155/2014/
863141.

Hao, P., Zhan, Y., Wang, L., Niu, Z., Shakir, M., 2015. Feature selection of time series
MODIS data for early crop classification using random forest: a case study in kansas,
USA. Remote Sens. 7, 5347. http://dx.doi.org/10.3390/rs70505347.

IBGE (Brazilian Institute of Geography and Statistics), 2015. Crop Statistics in Brazilian
Institute of Geography and Statistics. SIDRA.

Jönsson, P., Eklundh, L., 2004. TIMESAT-a program for analyzing time-series of satellite
sensor data. Comput. Geosci. 30, 833–845. http://dx.doi.org/10.1016/j.cageo.2004.
05.006.

Kumar, U., Kerle, N., Ramachandra, T.V., 2008. Constrained linear spectral unmixing
technique for regional land cover mapping using MODIS data. In: Elleithy, K. (Ed.),
Innovations and Advanced Techniques in Systems, Computing Sciences and Software
Engineering. Springer Netherlands, Dordrecht, pp. 416–423. http://dx.doi.org/10.

1007/978-1-4020-8735-6_78.
Li, G., Lu, D., Moran, E., Sant’Anna, S.J.S., 2012. A comparative analysis of classification

algorithms and multiple sensor data for land use/land cover classification in the
Brazilian Amazon. J. Appl. Remote Sens. 6 (1), 061706. http://dx.doi.org/10.1117/
1. JRS.6 061706.

Lobell, D.B., Asner, G.P., 2004. Cropland distributions from temporal unmixing of MODIS
data. Remote Sens. Environ. 93, 412–422. http://dx.doi.org/10.1016/j.rse.2004.08.
002.

Lu, D., Weng, Q., 2007. A survey of image classification methods and techniques for
improving classification performance. Int. J. Remote Sens. 28, 823–870. http://dx.
doi.org/10.1080/01431160600746456.

Lu, D., Mausel, P., Brondizio, E., Moran, E., 2002. Assessment of atmospheric correction
methods for Landsat TM data applicable to Amazon basin LBA research. Int. J.
Remote Sens. 23, 2651–2671. http://dx.doi.org/10.1080/01431160110109642.

Lu, D., Moran, E., Batistella, M., 2003. Linear mixture model applied to Amazonian ve-
getation classification. Remote Sens. Environ. 87, 456–469. http://dx.doi.org/10.
1016/j.rse.2002.06.001.

Lu, D., Batistella, M., Li, G., Moran, E., Hetrick, S., Freitas, C., Dutra, L., Sant’Anna, S.J.S.,
2012. Land use/cover classification in the Brazilian Amazon using satellite images.
Braz. J. Agric. Res. 47, 1185–1208. http://dx.doi.org/10.1590/S0100-
204X2012000900004.

Lu, D., Li, G., Moran, E., Kuang, W., 2014. A comparative analysis of approaches for
successional vegetation classification in the Brazilian Amazon. GISci. Remote Sens.
51, 695–709. http://dx.doi.org/10.1080/15481603.2014.983338.

Lunetta, R.S., Shao, Y., Ediriwickrema, J., Lyon, J.G., 2010. Monitoring agricultural
cropping patterns across the Laurentian Great Lakes Basin using MODIS-NDVI data.
Int. J. Appl. Earth Obs. Geoinf. 12, 81–88. http://dx.doi.org/10.1016/j.jag.2009.11.
005.

Massey, R., Sankey, T., Congalton, R., Yadav, K., Thenkabail, P., Ozdogan, M., Meador,
A., 2017. MODIS phenology-derived, multi-year distribution of conterminous U.S.
crop types. Remote Sens. Environ. 198, 490–503. http://dx.doi.org/10.1016/j.rse.
2017.06.033.

Maxwell, S.K., Nuckols, J.R., Ward, M.H., Hoffer, R.M., 2004. An automated approach to
mapping corn from Landsat imagery. Comput. Electron. Agric. 43, 43–54. http://dx.
doi.org/10.1016/j.compag.2003.09.001.

Mishra, N., Haque, M.O., Leigh, L., Aaron, D., Helder, D., Markham, B., 2014.
Radiometric cross calibration of Landsat 8 operational land imager (OLI) and Landsat
7 enhanced thematic mapper plus (ETM+). Remote Sens. 6, 12619–12638. http://
dx.doi.org/10.3390/rs61212619.

Odenweller, J.B., 1984. Crop identification using Landsat temporal-spectral profiles.
Remote Sens. Environ. 14, 39–54. http://dx.doi.org/10.1016/0034-4257(84)
90006-3.

Ozdogan, M., 2010. The spatial distribution of crop types from MODIS data: temporal
unmixing using independent component analysis. Remote Sens. Environ. 114,
1190–1204. http://dx.doi.org/10.1016/j.rse.2010.01.006.

Pan, Y., Li, L., Zhang, J., Liang, S., Zhu, X., Sulla-Menashe, D., 2012. Winter wheat area
estimation from MODIS-EVI time series data using the crop proportion phenology
index. Remote Sens. Environ. 119, 232–242. http://dx.doi.org/10.1016/j.rse.2011.
10.011.

Rudorff, B.F.T., Aguiar, D.A., Silva, W.F., Sugawara, L.M., Adami, M., Moreira, M.A.,
2010. Studies on the rapid expansion of sugarcane for ethanol production in São
Paulo State (Brazil) using landsat data. Remote Sens. 2, 1057. http://dx.doi.org/10.
3390/rs2041057.

Savitzky, A., Golay, M.J., 1964. Smoothing and differentiation of data by simplified least
squares procedures. Anal. Chem. 36, 1627–1639.

Teluguntla, P., Thenkabail, P.S., Xiong, J., Gumma, M.K., Congalton, R.G., Oliphant, A.,
Poehnelt, J., Yadav, K., Rao, M., Massey, R., 2017. Spectral matching techniques
(SMTs) and automated cropland classification algorithms (ACCAs) for mapping
croplands of Australia using MODIS 250-m time-series (2000–2015) data. Int. J.
Digital Earth. http://dx.doi.org/10.1080/17538947.2016.1267269.

Thenkabail, P.S., Velpuri, M., 2006. A global map of rainfed cropland areas at the end of
last millennium using remote sensing and geospatial techniques. Proc. SPIE 11,
114–129. http://dx.doi.org/10.1117/12.713204.

Thenkabail, P.S., Wu, Z., 2012. An automated cropland classification algorithm (ACCA)
for Tajikistan by combining Landsat, MODIS, and secondary data. Remote Sens. 4,
2890. http://dx.doi.org/10.3390/rs4102890.

Thenkabail, P.S., Schull, M., Turral, H., 2005. Ganges and Indus river basin land use/land
cover (LULC) and irrigated area mapping using continuous streams of MODIS data.
Remote Sens. Environ. 95, 317–341. http://dx.doi.org/10.1016/j.rse.2004.12.018.

Victoria, D.d.C., Paz, A.R.d., Coutinho, A.C., Brown, J.C., 2012. Cropland area estimates
using MODIS-NDVI times series in the state of Mato Grosso, Brazil. Pesq. Agropec.
Bras. 47, 1270–1278. http://dx.doi.org/10.1590/S0100-204X2012000900012.

Vieira, M.A., Formaggio, A.R., Rennó, C.D., Atzberger, C., Aguiar, D.A., Mello, M.P.,
2012. Object based image analysis and data mining applied to a remotely sensed
Landsat time-series to map sugarcane over large areas. Remote Sens. Environ. 123,
553–562. http://dx.doi.org/10.1016/j.rse.2012.04.011.

Vintrou, E., Desbrosse, A., Bégué, A., Traoré, S., Baron, C., Seen, D.L., 2012. Crop area
mapping in West Africa using landscape stratification of MODIS time series and
comparison with existing global land products. Int. J. Appl. Earth Obs. Geoinf. 14,
83–93. http://dx.doi.org/10.1016/j.jag.2011.06.010.

Vourlitis, G.L., Hayashi, M., de S Nogueira, J., Caseiro, F.T., Campelo, J.H., 2002.
Seasonal variations in the evapotranspiration of a transitional tropical forest of Mato
Grosso, Brazil. Water Resour. Res. 38. http://dx.doi.org/10.1029/2000WR000122.

Wang, W., Yao, X., Tian, Y., Liu, X., Ni, J., Cao, W., Zhu, Y., 2012. Estimating leaf nitrogen
concentration with three-band vegetation indices in rice and wheat. Field Crops Res.
129, 90–98. http://dx.doi.org/10.1016/j.fcr.2012.01.014.

Y. Chen et al. Int J Appl  Earth Obs Geoinformation 69 (2018) 133–147

146

http://dx.doi.org/10.1007/s10708-012-9469-3
http://refhub.elsevier.com/S0303-2434(18)30247-2/sbref0015
http://dx.doi.org/10.2747/1548-1603.44.2.117
http://dx.doi.org/10.1016/j.rse.2012.11.009
http://dx.doi.org/10.1016/j.rse.2012.11.009
http://dx.doi.org/10.1016/j.rse.2009.01.007
http://dx.doi.org/10.2134/agronj2007.0170
http://dx.doi.org/10.1016/j.rse.2004.03.014
http://dx.doi.org/10.1016/j.rse.2004.03.014
http://dx.doi.org/10.1080/01431161.2015.1088675
http://dx.doi.org/10.1016/j.isprsjprs.2016.07.007
http://dx.doi.org/10.1016/j.isprsjprs.2016.07.007
http://dx.doi.org/10.1016/j.landusepol.2016.03.005
http://refhub.elsevier.com/S0303-2434(18)30247-2/sbref0060
http://refhub.elsevier.com/S0303-2434(18)30247-2/sbref0060
http://dx.doi.org/10.1016/j.isprsjprs.2009.08.004
http://dx.doi.org/10.1111/gcb.13314
http://dx.doi.org/10.1590/S0100-204X2010000100010
http://dx.doi.org/10.1590/S0100-204X2010000100010
http://refhub.elsevier.com/S0303-2434(18)30247-2/sbref0080
http://refhub.elsevier.com/S0303-2434(18)30247-2/sbref0080
http://dx.doi.org/10.1016/j.rse.2009.03.014
http://dx.doi.org/10.1016/j.rse.2009.03.014
http://dx.doi.org/10.1016/j.rse.2007.05.017
http://dx.doi.org/10.1016/j.rse.2007.05.017
http://dx.doi.org/10.1080/01431161.2016.1148285
http://dx.doi.org/10.1080/01431161.2016.1148285
http://dx.doi.org/10.3390/rs8010019
http://dx.doi.org/10.1016/j.isprsjprs.2014.02.007
http://dx.doi.org/10.1080/17538947.2016.1168489
http://dx.doi.org/10.1155/2014/863141
http://dx.doi.org/10.1155/2014/863141
http://dx.doi.org/10.3390/rs70505347
http://refhub.elsevier.com/S0303-2434(18)30247-2/sbref0125
http://refhub.elsevier.com/S0303-2434(18)30247-2/sbref0125
http://dx.doi.org/10.1016/j.cageo.2004.05.006
http://dx.doi.org/10.1016/j.cageo.2004.05.006
http://dx.doi.org/10.1007/978-1-4020-8735-6_78
http://dx.doi.org/10.1007/978-1-4020-8735-6_78
http://dx.doi.org/10.1117/1. JRS.6 061706
http://dx.doi.org/10.1117/1. JRS.6 061706
http://dx.doi.org/10.1016/j.rse.2004.08.002
http://dx.doi.org/10.1016/j.rse.2004.08.002
http://dx.doi.org/10.1080/01431160600746456
http://dx.doi.org/10.1080/01431160600746456
http://dx.doi.org/10.1080/01431160110109642
http://dx.doi.org/10.1016/j.rse.2002.06.001
http://dx.doi.org/10.1016/j.rse.2002.06.001
http://dx.doi.org/10.1590/S0100-204X2012000900004
http://dx.doi.org/10.1590/S0100-204X2012000900004
http://dx.doi.org/10.1080/15481603.2014.983338
http://dx.doi.org/10.1016/j.jag.2009.11.005
http://dx.doi.org/10.1016/j.jag.2009.11.005
http://dx.doi.org/10.1016/j.rse.2017.06.033
http://dx.doi.org/10.1016/j.rse.2017.06.033
http://dx.doi.org/10.1016/j.compag.2003.09.001
http://dx.doi.org/10.1016/j.compag.2003.09.001
http://dx.doi.org/10.3390/rs61212619
http://dx.doi.org/10.3390/rs61212619
http://dx.doi.org/10.1016/0034-4257(84)90006-3
http://dx.doi.org/10.1016/0034-4257(84)90006-3
http://dx.doi.org/10.1016/j.rse.2010.01.006
http://dx.doi.org/10.1016/j.rse.2011.10.011
http://dx.doi.org/10.1016/j.rse.2011.10.011
http://dx.doi.org/10.3390/rs2041057
http://dx.doi.org/10.3390/rs2041057
http://refhub.elsevier.com/S0303-2434(18)30247-2/sbref0215
http://refhub.elsevier.com/S0303-2434(18)30247-2/sbref0215
http://dx.doi.org/10.1080/17538947.2016.1267269
http://dx.doi.org/10.1117/12.713204
http://dx.doi.org/10.3390/rs4102890
http://dx.doi.org/10.1016/j.rse.2004.12.018
http://dx.doi.org/10.1590/S0100-204X2012000900012
http://dx.doi.org/10.1016/j.rse.2012.04.011
http://dx.doi.org/10.1016/j.jag.2011.06.010
http://dx.doi.org/10.1029/2000WR000122
http://dx.doi.org/10.1016/j.fcr.2012.01.014


Wardlow, B.D., Egbert, S.L., 2008. Large-area crop mapping using time-series MODIS 250
m NDVI data: an assessment for the US central great plains. Remote Sens. Environ.
112, 1096–1116. http://dx.doi.org/10.1016/j.rse.2007.07.019.

Wardlow, B.D., Egbert, S.L., 2010. A comparison of MODIS 250-m EVI and NDVI data for
crop mapping: a case study for southwest Kansas. Int. J. Remote Sens. 31, 805–830.
http://dx.doi.org/10.1080/01431160902897858.

Wardlow, B.D., Egbert, S.L., Kastens, J.H., 2007. Analysis of time-series MODIS 250 m
vegetation index data for crop classification in the US Central Great Plains. Remote
Sens. Environ. 108, 290–310. http://dx.doi.org/10.1016/j.rse.2006.11.021.

Xiao, X., Boles, S., Liu, J., Zhuang, D., Frolking, S., Li, C., Salas, W., Moore Iii, B., 2005.
Mapping paddy rice agriculture in southern China using multi-temporal MODIS
images. Remote Sens. Environ. 95, 480–492. http://dx.doi.org/10.1016/j.rse.2004.
12.009.

Xiong, J., Thenkabail, P., Gumma, M., Teluguntla, P., Poehnelt, J., Congalton, R., Thau,
Yadav K., 2017. Automated cropland mapping of continental Africa using Google
Earth Engine cloud computing. ISPRS J. Photogramm. Remote Sens. 126, 225–244.
http://dx.doi.org/10.1016/j.isprsjprs.2017.01.019.

Xu, X., Conrad, C., Doktor, D., 2017. Optimising phenological metrics extraction for
different crop types in Germany using the Moderate Resolution Imaging Spectrometer
(MODIS). Remote Sens. 9, 254. http://dx.doi.org/10.3390/rs9030254.

Zhang, M., Zhou, Q., Chen, Z., Liu, J., Zhou, Y., Cai, C., 2008. Crop discrimination in

Northern China with double cropping systems using Fourier analysis of time-series
MODIS data. Int. J. Appl. Earth Obs. Geoinf. 10, 476–485. http://dx.doi.org/10.
1016/j.jag.2007.11.002.

Zheng, B., Myint, S.W., Thenkabail, P.S., Aggarwal, R.M., 2015. A support vector machine
to identify irrigated crop types using time-series Landsat NDVI data. Int. J. Appl.
Earth Observ. Geoinf. 34, 103–112. http://dx.doi.org/10.1016/j.jag.2014.07.002.

Zhong, L., Gong, P., Biging, G.S., 2014. Efficient corn and soybean mapping with tem-
poral extendability: a multi-year experiment using Landsat imagery. Remote Sens.
Environ. 140, 1–13. http://dx.doi.org/10.1016/j.rse.2013.08.023.

Zhong, C., Wang, C., Wu, C., 2015. MODIS-based fractional crop mapping in the U.S.
midwest with spatially constrained phenological mixture analysis. Remote Sens. 7,
512. http://dx.doi.org/10.3390/rs70100512.

Zhong, L., Yu, L., Li, X., Hu, L., Gong, P., 2016. Rapid corn and soybean mapping in US
Corn Belt and neighboring areas. Sci. Rep. 6. http://dx.doi.org/10.1038/srep36240.

Zhu, C., Lu, D., Victoria, D., Dutra, L., 2016. Mapping fractional cropland distribution in
Mato Grosso, Brazil using time series MODIS enhanced vegetation index and Landsat
Thematic Mapper data. Remote Sens. 8, 22. http://dx.doi.org/10.3390/rs8010022.

Zhu, L., Radeloff, V.C., Ives, A.R., 2017. Improving the mapping of crop types in the
Midwestern U.S. by fusing Landsat and MODIS satellite data. Int. J. Appl. Earth Obs.
Geoinf. 58, 1–11. http://dx.doi.org/10.1016/j.jag.2017.01.012.

Y. Chen et al. Int J Appl  Earth Obs Geoinformation 69 (2018) 133–147

147

http://dx.doi.org/10.1016/j.rse.2007.07.019
http://dx.doi.org/10.1080/01431160902897858
http://dx.doi.org/10.1016/j.rse.2006.11.021
http://dx.doi.org/10.1016/j.rse.2004.12.009
http://dx.doi.org/10.1016/j.rse.2004.12.009
http://dx.doi.org/10.1016/j.isprsjprs.2017.01.019
http://dx.doi.org/10.3390/rs9030254
http://dx.doi.org/10.1016/j.jag.2007.11.002
http://dx.doi.org/10.1016/j.jag.2007.11.002
http://dx.doi.org/10.1016/j.jag.2014.07.002
http://dx.doi.org/10.1016/j.rse.2013.08.023
http://dx.doi.org/10.3390/rs70100512
http://dx.doi.org/10.1038/srep36240
http://dx.doi.org/10.3390/rs8010022
http://dx.doi.org/10.1016/j.jag.2017.01.012

	Mapping croplands, cropping patterns, and crop types using MODIS time-series data
	Introduction
	Study area
	Methods
	Data collection and preprocessing
	Approach to mapping cropland distribution
	Approach to mapping cropping pattern and crop type distribution
	Evaluation of cropland, cropping pattern and crop types

	Results
	Analysis of cropland mapping results
	Analysis of cropping pattern mapping results
	Analysis of crop type mapping results

	Discussion
	Conclusions
	Declarations of interest
	Acknowledgements
	References




